The part of syllabus which we cover

01. AGRICULTURAL BIOTECHNOLOGY

Unit 1: Cell Structure and Function

Prokaryotic and eukaryotic cell architecture, Cell wall, plasma membrane, Structure and function of cell organelles: vacuoles, mitochondria, plastids, golgi apparatus, ER, peroxisomes, glyoxisomes. Cell division, regulation of cell cycle, Protein secretion and targeting, Cell division, growth and differentiation.

Unit 2: Biomolecules and Metabolism

Structure and function of carbohydrates, lipids, proteins and nucleic acids, Synthesis of carbohydrate, glycolysis, HMP, Citric acid cycle and metabolic regulation, Oxidative phosphorylation and substrate level phosphorylation, Vitamins, plant and animal hormones. Functional molecules, antioxidants, nutrient precursor, HSPs, anti-viral compounds.

Unit 3: Enzymology

Enzymes, structure conformation, classification, assay, isolation, purification and characterization, catariysis specificity, mechanism of action, active site, regulation of enzyme activity, multienzyme complexes, immobilized enzymes and protein engineering, immobilized enzymes and their application.

Unit 4: Molecular Genetics

Concept of gene, Prokaryotes as genetic system, Prokaryotic and eukaryotic chromosomes, methods of gene isolation and identification, Split genes, overlapping genes and pseudo genes, Organization of prokaryotic and eukaryotic genes and genomes including operan, exon, intron, enhancer promoter sequences and other regulatory elements. Mutation – spontaneous, induced and site-directed, recombination in bacteria, fungi and viruses, transformation, transduction, conjugation, transposable elements and transposition.

Unit 5: Gene Expression

Expression of genetic information, operon concept, Transcription – mechanism of transcription in prokaryotes and eukaryotes, transcription unit, regulatory sequences and enhancers, activators, repressors, co-activators, Co-repressors in prokaryotes and eukaryotes, inducible genes and promoters, Transcription factors post transcriptional modification and protein transport, DNA-protein interaction, Genetic code. Mechanism of translation and its control, post translational modifications

Unit 6: Molecular Biology Techniques

Isolation and purification of nucleic acids. Nucleic acids hybridization: Southern, northern and western blotting hybridization. Immune response monoclonal and polyclonal antibodies and ELISA, DNA sequencing. Construction and screening of genomic and C-DNA libraries. Gel electrophoretic techniques. Polymerase chain reactor spectroscopy, rtPCR ultracentrifugation, chromatography, FISH, RIA etc.

Unit 7: Gene Cloning

Restriction enzymes and their uses. Salient features and uses of most commonly used vectors i.e. plasmids, bacteriophages, phagmids, cosmids, BACs, PACs and YACs, binary vectors, expression vectors. Gene cloning and sub-cloning strategies, chromosome walking, genetic transformation, Basis of animal cloning. Biology. Risk assessment and IPR.

Unit 8: Molecular Biology

Ribosome structure and function. Protein biosynthesis in prokaryotes and ekaryotes. Post-translational modification. Gene regulation, RNA processing and Post transcriptional modifications. Bioprospecting, biofortification, gene pryrimiding and gene fusion, nbozyme technology.

Unit 9: Plant Molecular Biology

Photoregulation and phytochrome regulation of nuclear and chloroplastic gene expression. Molecular mechanism of nitrogen fixation. Molecular biology of various stresses, *viz.* abiotic stresses like drought, salt, heavy metals and temperature; and biotic stresses like bacterial, fungal and viral diseases. Signal transduction and its molecular basis, molecular mechanism of plant hormone action mitochondrial control of fertility, structure, organization and regulation of nuclear gene concerning storage proteins and starch synthesis.

Unit 10: Tissue Culture

Basic techniques in cell culture and somatic cell genetics. Regulation of cell cycle and cell division. Clonal propagation. Concept of cellular totipotency. Anther culture, somaclonal and gametoclonal variations. Hybrid embryo culture and embryo rescue, somatic hybridization and cybridization. Application of tissue culture in crop improvement. Secondary metabolite production. *In vitro*, mutagenesis, cryopreservation and plant tissue culture repository.

Unit 11: Plant Genetic Engineering

Isolation of genes of economic importance. Gene constructs for tissue-specific expression. Different methods of gene transfer to plants, *viz.* direct and vectormediated. Molecular analysis of transformants. Potential applications of plant genetic engineering for crop improvement, i.e. insect-pest resistance (insect, viral, fungal and bacterial disease resistance), abiotic stress resistance, herbicide resistance, storage protein quality, increasing shelf-life, oil quality, Current

status of transgenics, biosafty norms and controlled field trials and release of transgenics (GMOs).

Unit 12: Molecular Markers and Genomics

DNA molecular markers: Principles, type and applications; restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), randomly amplified polymorphic DNA sequences (RAPD), Simple sequence repeats (SSR), Single nucleotide polymorphism (SNP), Structural and functional genomics, gene mapping, genome mapping, gene tagging and comparative genomics and application of genomics.

07. PLANT BIOCHEMISTRY

Unit 1: Basic Biochemistry and Biomolecules

Scope and importance of biochemistry and molecular biology in plants. Structural and functional organization of prokaryotic and eukaryotic cells, viruses and bacteriophages, cell organelles function and their fractionation. Chemical bonding in biological systems, pH and buffers. Thermodynamics and bioenergetics- concept of entropy, and free energy changes in biological reactions, Redox reactions, Role of high energy phosphates. Biomembranes. Classification structure, chemistry, properties and function of carbohydrates, proteins, lipids and nucleic acids. Components of immune system, Prostaglandins.

Unit 2: Intermediary Metabolism

Anabolism, catabolism and their regulation. Metabolism of carbohydrates – glycolitic pathway, HMP pathway, TCA cycle, glyoxylate pathway and gluconeogenesis. Biological oxidation-electron transfer and oxidative phosphorylation. Lipid metabolism, degradation and biosynthesis of fatty acids, ketogenesis and causes of ketosis. Biosynthesis of sterols and phospholipids. Amino acid metabolism – catabolism of amino acids, transamination and deamination, urea cycle, biosynthesis of amino acids. Conversion of amino acids into bioactive compounds. Metabolism of nucleic acids-degradation and biosynthesis of purines, pyrimidines and nucleotides. Integration of carbohydrate, lipid and amino acid metabolism. Signal transduction mechanisms. Role of G-proteins, cyclic nucleotides and calcium in transduction. Disorders of lipid, carbohydrate, nucleic acid, amino acid metabolism. Inborn errors of metabolism. Secondary metabolites, biotransfermation and over expression.

Unit 3: Enzymes, Vitamins and Hormones

Major classes of enzymes, general properties, kinetics, active site and its mapping, activation energy and transition state. Mechanisms of enzyme action, inhibition and activation. Coenzymes and cofactors. Isoenzymes and immobilized enzymes. Regulation of enzyme activity, allosteric regulation. Multi substrate reactions, kinetic experiments to determine the mechanism of multi substrate reactions. Isolation, purification and measurement of enzyme activity. Enzyme units.

Enzyme engineering. Role of enzymes in agriculture, industry, and medicine. Structure, mode of action and metabolic functions of vitamins. Deficiency diseases associated with vitamins. General description of nature hormones and disorders associated with endocrine glands, viz. pituitary, thyroid, adrenal, pancreas and gonads. Peptide and steroid hormones. Phyto hormones – auxins, gibberellins, cytokinins, ethylene, abscisic acid and new plant bio-regulators like SA, Brassino of .

Unit 4: Molecular Biology

Structure of DNA and RNA Replication, transcription and translation. Posttranscriptional and translational modifications. Transcriptional and translation control of prokaryotes and eukaryotes. Features of genetic code in prokaryotes and eukaryotes. Gene expression - operon model, induction and repression, control of gene expression in prokaryotes and eykaryotes. Chloroplant and Mitochondrial genomes. Replication of viruses. Mutagens, oncogenes and carcinogenesis. General principles of recombinant DNA technology, restriction enzymes. Methods of gene transfer-plasmid and viruses as vectors, DNA and protein sequence analysis, oligonucleotide synthesis, genomic and cDNA library construction, site-directed mutagenesis, transposon tagging, chromosome walking. Basics of genome organization and mapping, functional genomics. Gene silencing. Methods for the development of transgenic organisms. Computer application in molecular biology, primer designing, sequence analysis and phylogenetic analysis. Benefits of gene manipulation in agriculture, nanobiotechnology, biochips.

Unit 5: Techniques in Biochemistry

Principles of optical, phase contrast, fluorescence and electron microscopy, spectrophotometry, UV and VIS, fluorimetry, turbidometry and atomic absorption spectrophotometry. Radioisotopic techniques – scintillation counters and autoradiography and their application in biological sciences. Flectrophoresis - general principles and application, gel electrophoresis, isoelectric focusing, pulsed field gel electrophoresis, immunoelectrophoresis. Chromatographic techniques - paper, thin layer, column chromatography, GC and HPLC. Centrifugation - principles of sedimentation in various rotors, differential centrifugation, density gradient centrifugation and ultracentrifugation. Cell tissue and organ culture. Cryopreservation, PCR and application of RFLP, RAPD, AFLP, microsatellite and mitochondrial and ribotyping techniques. Southern, Northern and Western blotting, ELISA. Microarray and DNA chips. Preliminary methods of statistical analysis as applied to agricultural data – standard deviation, standard error, ANOVA, correlation and regression.

Unit 6: Biochemistry of Food-grains, Fruits and Vegetables

Fundamentals of nutrition, concept of balanced diet. Nutritional quality of protein and its evaluation. Dietary fibre. Vitamins- biochemical functions and deficiency diseases. Fats and lipids-types of fatty acids and their significance in health. Biochemical composition and food value of various food grains (including cereals, pulses, oil seeds), fruits and vegetables. Biochemistry of fruit ripening, biochemical aspects of post harvest technology, storage and

preservation. Biochemical basis of quality improvement of food grains, vegetables and fruits. Antioxidants, nutraceticals. Food toxins and anti-metabolites, food additives, storage proteins.

Unit 7: Photosynthesis

Photosynthesis – photosynthetic pigments, light reactions, photosystems. Photophosphorylation, dark reactions: C3, C4 and CAM pathways. Regulation of Rubisco. Chemisomotic coupling. Carbon cycle and its regulation, Ion fluxes and conformational changes during photosynthesis. Photorespiration. Relationship between photosynthesis, photorespiration and crop productivity. Chloroplasm morphology, structure and biochemical anatomy. Cytosolic and organelle interactions. Nature and exchange of metabolites through translocators. Seed reserve biosynthesis.

Unit 8: Plant Metabolic Processes

Uptake and metabolism of mineral nutrients in plants. Sulphur metabolism. Nitrogen cycle, nitrate and nitrite reduction, denitrification, symbiotic and non-symbiotic nitrogen fixation. Biochemical and physiological role of hydrogenase. Chemoautrotrophy in rhizobia and nitrifying bacteria. Cell cycle. Growth regulation in plants. Signal transduction and phytohormones. Molecular mechanisms of plant growth, hormone action. Role of oligosaccharides and polysaccharides in cellular metabolism. Metabolism of cyanogenic glycosides and glucosinolates.

Unit 9: Plant Molecular Biology

General organization of nuclear, mitochondrial and chloroplast genomes. Genomics and functional genomics. Tissue specific expression of genes. Molecular biology of various stresses – drought, salinity and temperature. Signal transduction and its molecular basis: molecular mechanism of plant hormone action. Structure, organization and regulation of nuclear genes. Genes involved in photosynthesis and nitrogen fixation. Regulation of chloroplast gene expression. Mitochondrial control of fertility. Molecular markers in plants and their uses.

Unit 10: Plant Biotechnology / Genetic Engineering

Totipotency, application of tissue culture for plant improvement, cryopreservation. Protoplasm fusion. General principles of gene cloning. Isolation and characterization of plant genes and promoters. Different methods of gene transfer –direct and vectormediated. Gene silencing. Site directed mutagenesis. Molecular analysis of transformants. Potential applications of plant genetic engineering for crop improvement – insect-pest resistance (insect, viral, fungal and bacterial diseases). Abiotic stress tolerance, herbicide resistance, storage protein quality improvement, increasing shelf- life, oil quality. Biosafety and IPR issues.

09. PLANT PHYSIOLOGY

Unit 1: Cell Organelles and Water Relations

Cell organelles and their physiological functions Structure and physiological functions of cell wall, cell inclusions. Cell membrane structure and functions. Water and its role in plants, properties and functions of water in the cell, water relations, water potential of plant cells. Mechanism of water uptake by roots transport in roots, movement of water in plants, water loss from plants, energy balance, solar energy, input energy dissipation at crop canopy level. Evapotranspiration, plant factors influencing transpiration rate. Stomata, structure function - Mechanism of stomatal movement, antitranspirants. Physiology of water high temperature and salinity stress in plants. Influence of water stresses at cell, organ, plant and canopy levels. Indices for assessment of drought resistance.

Unit 2: Metabolic Processes and growth Regulation

Energy and work, free energy and chemical potential, redox reactions and electrochemical potential. Enzyme classification and mechanism of action, factors affecting enzyme action. Gene expression and protein turnover. Photosynthesis, translocation and respiration as key processes regulating carbon metabolism and plant growth. Photosynthesis and bioproductivity. Photochemical process- Chloroplast, its structure, CAM plants and their significance. Rubisco structure and regulations, Photorespiration and its significance, CO2 fixation as a diffusive process, effect of environmental factors on photosynthetic rates. Synthesis of sucrose, starch, oligo and polysaccharides. Translocations of photosynthates and its importance in sink growth. Mitochondrial respiration, growth and maintenance respiration, cyanide resistant respiration and its significance. Nitrogen metabolism. Inorganic nitrogen species (N2, N03, NH3) and their reduction, protein synthesis, nucleic acids. Sulphate uptake and reduction. Lipid metabolismstorage, protective and structural lipids. Secondary metabolites and their significance in plant defence mechanism. Growth and differentiation, hormonal concept of growth and differentiation, plant growth hormones (auxins, gibberellins, cyctokinins, ABA, ethylene etc.), biosynthesis of growth hormones and their metabolism, synthetic growth regulators, growth retardant, apical dominance, senescence, fruit growth, abscission, photomorphogenesis, photo-receptors, phytochrome, physiology of flowering, photoperiodism and vernalisation.

Unit 3: Crop Productivity and Modeling

Role of crop physiology in agriculture, crop growth and productivity, crop growth models describing yield (Duncan/Passioura), phenology-crop productivity, growth factors related to biomass - concept of growth rates- canopy photosynthesis (leaf area and net assimilation rates as determining factors). Light interception as a major function of leaf area-index, LAD canopy architecture- Light extinction coefficient relative growth rate. Net assimilation rate. Biomass and yield relations. Assimilate partitioning, yield and yield structure analysis. Concept of source and sink, factors influencing source and sink size and productivity. Environmental factors determining crop growth. Light, temperature and VPD, effect of photoperiod and thermoperiod on duration of growth stages. Ideotype concept-selection- indices for improving crop productivity.

Unit 4: Abiotic Stress Responses in Plants

Abiotic stresses affecting plant productivity. Basic principles of a crop improvement programme under stress, interactions between biotic and abiotic stresses. Drought characteristic features, water potential in the soil-plant-air continuum. Development of water deficits, energy balance concept, transpiration and it's regulation – stomatal functions/VPD. Physiological process affected by drought. Drought resistance mechanisms: Escape, dehydration postponement (Drought avoidance), Dehydration tolerance, and characteristics of resurrection plants. Osmotic adjustment Osmoprotectants, stress proteins. Water use efficiency as a drought resistance trait. Molecular responses to water deficit stress perception, expression of regulatory and function genes and significance of gene products. Stress and hormones-ABA as a signaling molecule – Cytokinin as negative signal. Oxidative stress: reactive oxygen species (ROS) – role of scavenging systems (SOD, catalase etc.). High temperature stress: tolerance mechanisms- role of membrane lipids in high temperance tolerance. Functions of HSPs chilling stress; effects on physiological processes. Crucial role of membrane lipids. Salinity: species variation in salt tolerance. Salinity effects at cellular and whole plant level, tolerance mechanisms. Breeding for salt resistance. Heavy metal stress: aluminum and cadmium toxicity in acid soils. Role of phytochelatins (heavy, metal binding proteins).

Unit 5: Plant Growth Regulators and Plant Development

Plant growth regulators – Hormones, endogenous growth substances and synthetic chemicals. Endogenous growth regulating substances other than hormones. Brassinosteriods, triacontanol, phenols polyamines, jasmonates, concept of death hormone. Classification, site of synthesis, biosynthetic pathways and metabolism and influence on plant growth and development by auxins, gibberellins, cytokinins, abscisic acid and ethylene. Concept of hormone action hormone receptors and signal transduction Hormone mutants. Hormonal regulation of gene expressions at various developmental stages of plant-flowering, seed maturity, seed dormancy. Action of hormones on cellular functions: Auxins- cell elongation, retardation of abscission of plant parts, gibberellins – stem elongation, germination of dormant seeds, cytokinins- cell division, retardation of senescence. Abscisic acid- stomatal closure and induction of drought resistance, ethylene- fruit ripening, acceleration of senescence of leaves. Interaction of hormones in regulation of plant growth and development processes. Synthetic growth regulators, growth retardants, apical dominance, senescence, fruit growth, abscission. Growth and differentiation, hormonal concept of growth and differentiations. Rooting of cuttings- floweringphysiological and molecular aspects of control of reproductive growth. Apical dominance, senescence and abscission. Fruit growth and development, physiological and molecular aspects of ripening processes and improving post harvest life of fruits. Induction and breaking dormancy in seeds and buds. Synthetic growth regulators. Practical utility in agriculture and horticulture. Herbicides, classification and their mode of action.

Unit 6: Mineral Nutrition

Importance of mineral nutrition in plant growth. Classification and essentiality criteria. General mechanisms - concept of apparent free space and nature of biomembranes. Dual mechanism and other concepts of ion uptake. Short distance transport-pathway from external solution (Apoplasm) to sieve across the root cortical cells-factors contributing to xylem loading. Long distance transport in xylem and phloem, xylem unloading in leaf cells. Uptake and release of mineral nutrients by foliage. Rhizosphere and root biology, root growth, influence of microorganism in nutrient acquisition, release and uptake by plant roots. Yield and mineral nutritionconcept of nutrient use efficiency, Mineral nutrition under adverse soil situationsdrought, salinity, acidity etc. Heavy metal toxicity and concept of phytoremediation. Interaction of phytohormones and nutrients. Molecular aspects- uptake and transport, role of transporter genes, genetics of nutrient uptake, identification and transfer of genes for tolerance to nutrient deficiencies, etc.

Unit 7: Climate and Climate Change

Climate- Analytical methods to determine long term changes in environment- Tree ring, cellulose, stable carbon isotope discrimination, stable 18O discrimination for hydrological changes. Likely changes in climate in future and its impact on crop and ecosystems. The greenhouse gases and global warning. CO2 as an important greenhouses gas, global carbon deposits, fluxes in the sinks and sources. Approaches to contain atmospheric CO2 level. Effect of elevated CO2 on plant growth and development. Methane as a greenhouse gas. Prediction on global warming, GCA models, effects on climate and biota. High temperature and CO2 interaction on plant growth and productivity, ionising radiation UV-B chlorofluro carbon (CFC)—their impact on ozone layer- ozone hole and alteration in UV-B radiation. Effects of UV-B radiation on plant ecosystem, repair and acclimation to UV-B damage. Carotenoids and their role in membrane stabilization. Air pollution, SO2, NO, methane, ozone, peroxy acetyl nitrate and their effect on ecosystem. Industrial and domestic effluenttheir effect, on aquatic ecosystem, plant growth and development.

Unit 8: Seed Physiology

Structure of seeds and their storage. Seed development patterns and source of assimilates for seed development. Pathway of movement of assimilates in developing grains of monocots and dicots. Chemical composition of seeds. Storage of carbohydrates, proteins and fats in seeds. Hydration of seeds. Physiological processes. Seed respiration, mitochondrial activity Mobilization of stored resource in seeds. Chemistry of oxidation of starch, proteins and fats. Utilization of breakdown products by embryonic axis. Control processes in mobilization of stored reserves. Role of embryonic axes. Gibberellin and α -amylase and other hydrolytic activity. Seed maturation phase and desiccation damage, role of LEA proteins. Seed viability. Seed dormancy. Means to overcome seed dormancy.

Unit 9: Physiology of Flowering and Reproduction

Evolutionary history of flowering plants (angiosperms). Semelparous and iteroparous reproduction, monocarpic and perennial life etc. Flowering phenomenon, effect of plant age, juvenility- transition to flowering. Flowering nature and classification of plants. Photoperiodic responses and the mechanisms in short and long day plants. Theories related to flowering. Endogenous substances and flowering. Gene expression in flowering. Control of flowering. Thermoperiodism - photo and thermo-period interactions. Vernalization-mechanism. Photomorphogenesis, photoreceptors, phytochrome, cryptochrome, physiology of flowering, photoperiodism and vernalization. Optimization in flowering response-to environmental features (light, temperature, stress) etc. plant reproductive physiology. Mating strategy in plants, molecular techniques to understand mating patterns, self-incompatibility responses, physiological processes mediating fertilization (pollen-stigma interactions), seed and fruit development, seed and fruit abortion and means to overcome it. Molecular biology of seed development, physiological basis of cytoplasmic male sterility and fertility restoration. Physiology of heterosis.

Unit 10: Physiology of Horticultural and Plantation Crop species

Growth and development of horticultural and plantation crop species. Juvenility, shoot growth, types of shoots, patterns of shoot growth, cambial growth and its regulation. Physiological aspects of pruning and dwarfing. Growth measurements. Water relations of tree species. Water uptake and transport. Concepts of transpiration rate and water use efficiency. Sexual and asexual propagation. Rootstock and scion interactions. Physiology of flowering in perennial species, photoperiodism and thermoperiodism. Physiological aspects of fruit crops: mango, banana, grapes, citrus, papaya and pineapple etc. Physiological aspects of plantation crops: tea, coffee, cardamom, coconut, and blackpepper.

Unit 11: Post-Harvest Physiology

Senescence and ageing in plants. Ethylene – the senescence hormone, leaf senescence. Monocarpic plant senescence. Biochemistry and molecular biology of flower senescence. Gene expression during senescence. Concept of physiological maturity of seeds - post harvest changes in biochemical constituents in field crops - loss of viability, loss of nutritive value, environmental factors influencing post-harvest deterioration of seeds. Physiological and biochemical changes during fruit ripening and storage. Senescence and post harvest life of cut flowers. Physical, physiological and chemical control of post - harvest deterioration of fruits, vegetables and cut flowers and its significance during storage and transport. Molecular approach in regulation of fruit ripening. Transgenic technology for improvement of shelf-life. Edible vaccine

Unit 12: Morphogenesis, Tissue Culture and Plant Transformation

Morphogenesis; the cellular basis of growth and morphogenesis; polarity in tip growing cells and diffusive growing cells. Control of cell division and differentiation, phyto-chromes, different forms, physiological effects and gene regulation, and cellular totipotency, physiology and biochemistry of differentiation, in organ cell, tissue and cultures, micropropagation strategies,

application of tissue culture in agriculture, horticulture, forestry and industry: plant transformation; transformation vectors, concept of selectable and scorable markers. *Agrobacterium* mediated transformation, binary vectors, biolistics. Electroporation, selection of putative transgenic plants, genetic analysis. PCR, Southern analysis evaluation of transgenic plants.

15. ANIMAL BIOCHEMISTRY

Unit 1:

Scope of Biochemistry and molecular biology in animal sciences. Structural and functional organization of prokaryotic and eukaryotic cells, viruses and bacteriphages. Compartmentalization of metabolic processes within the cell and fractionation of subcellular components. Structure and functions of biomembranes with special reference to active transport of ions and metabolites. Extra and intracellular communication. General description of cell culture, hybridoma and animal cloning techniques.

Unit 2:

Structure and properties of biologically important carbohydrates including storage and structural polysaccharides, mucopolysaccharides, blood group substances, peptidoglycans and bacterial polysaccharides. Structure and properties of fatty acids, acyl glycerol, glycerophospholipids, sphingolipids, glycolipids, sulfolipids, aminolipids, sterols, bile acids and prostaglandins. Basic principles of isolation, estimation and analysis of carbohydrates and lipids.

Unit 3:

Aminoacids, structure and properties. Primary, secondary, tertiary and quaternary structure of proteins. Glycoproteins, lipoproteins, nucleoproteins, fibrous and globular proteins. Structure and functions of immunoglobulins, myoglobin and hemoglobin. Physical and chemical properties of proteins. Structure of different types of nucleic acids. Acid base properties, sedimentation behaviour, hyperchromic effect, base sequencing and restriction analysis of DNA. Computer applications in molecular biology, primer designing, sequence analysis and phylogenetic analysis.

Unit 4:

Major classes of enzymes, general proerties, kinetics and mechanism of their action. Activation energy and transition state. Coenzymes and cofactors. Regulation of enzyme activity and enzyme inhibition. Isoenzymes and enzymes of clinical significance. Applications and scope of enzymes in bioprocess technology and genetic engineering.

Unit 5:

Bioenergetics, biological oxidation, respiratory chain and oxidative phosphorylation. Citric acid cycle and ATP generation. Glycolysis, pentose phosphate pathway and glycogenesis.

Biosynthesis and oxidation of fatty acids. Volatile fatty acids as source of energy in ruminants. Ketogenesis and cause of ketosis in ruminants. Biosynthesis of sterols and phospholipids. Catabolism of amino acids, transmination and determination, urea cycle. Intergration of carbohydrate, lipid and amino acid metabolism. Conversion of amino acids into other bioactive compounds. Biosynthesis of nutritionally non-essential amino acids. Metabolism of purines and pyrimidines. Disorders of lipid, carbohydrate, nucleic acid and amino acid metabolism. Inborn errors of metabolism and scope of gene therapy in combating genetic disorders.

Unit 6:

Mechanism of storage, transmissions and expression of genetic information. DNA replication and control of gene expression in prokaryotes and eukaryotes. RNA synthesis and factors regulating transcription. Biosynthesis of proteins. Features of genetic code in prokaryotes and eukaryotes. Wobble hypothesis, post-translational modification, degeneracy and regulation of translation. Basic principles of recombinant DNA technology and its scope in animal health and production. Recombinant proteins and vaccines, safety, ethical issues and IPRs in molecular biology.

Unit 7:

Structure and metabolic functions of water soluble and lipid soluble vitamins. Trace elements and their role in biological processes. Deficiencies and nutritional significance of vitamins and trace elements in domestic animals and poultry, neutraceuticels & probiotics. General description of nature of hormones, receptors and mechanisms of their action. Metabolic function of different hormones and associated disorders due to hypo or hyper secretions of major endocrine glands viz. pituitary, thyroid, adrenal, pancreas and gonads.

Unit 8:

Blood composition and biochemical constituents of erythrocytes, leucocytes and platelets. Important plasma proteins and their functions. Haemoglobin in oxygen and carbon dioxide transport. Role of kidneys in acid base balance. Composition and metabolism of muscle, connective, tissue, cartilage, bone, nervous, tissue, adipose tissue and mammary tissue. Clinical significance of iron, iodine calcium and phosphorus metabolism in domestic animals and poultry. Biochemical tests for hepatic and renal functions. Urine composition and analysis.

Unit 9:

Basic principles and use of latest photometric, chromatographic, eletrophoretic and redioisotopic methods of biochemical analysis. Mehods of isolation, purification and characterization of proteins, DNA and RNA. Basic principles of RIA, ELISA, PCR, RFLP and DNA fingerprinting NA probes, vectors, microarray, imaging, applications of nanotechnology, proteomics. Determination of enzymes, hormones, vitamins and other biochemical constituents with special reference to disease diagnosis in domestic animals.

Unit 10:

Environmental pollution in relation to animal health and production. Biotechnology in pollution control. Biochemical basis of pollutant tolerance, host defence mechanisms including antigenic and non-antigenic interactions. Free radicals, carcinogenesis and role of liver and kidneys in detoxification. Oncogenes and mechanism of immuno suppression in cancer therapy and organ transplantation.

16. ANIMAL BIOTECHNOLOGY

Unit 1: Cell Biology

Prokaryotic and eukaryotic cell architecture. Molecular organization and functions of cell membrance. Organisation and functions of the cytoplasm, cell organelles, endoplasmic reticulum, ribosomes, Golgi complex, mitochondria, Iysosomes, nucleolus and subnuclear structures. Protein secretion and targeting. Intracellular digestion. Oxidative phosphorylation. Cell division. Cell growth and differentiation. Control of proliferation and self regulation. Cell motility. Cell trafficking and signaling. Apoptosis.

Unit 2: Molecular Biology

DNA replication in prokaryotic and eukaryotic cells. Structure and functions of DNA polymerases. Molecular mechanisms of DNA repair. Synthesis and processing of different types of RNA. RNA polymerases. Protein biosynthesis. Genetics of mitochondria and plasmids. Transposons and intervening sequences. Minisatellites and macrosatellites. Molecular mechanism of spontaneous and induced mutations. Site directed mutagenesis. Recombination in bacteria, fungi and viruses. Molecular mechanism of genetic recombination, transduction, transformation and conjugation.

Unit 3: Gene Structure and Expression

Organisation of prokaryotic and eukaryotic genome. Repeated and non-repeated DNA sequences. The structure and chemical nature of the gene. Expression of genetic information, transcription – mechanism of transcription in prokaryotes and eukaryotes, transcription unit, regulatory sequences and enhncers, transcription factors, post-transcriptional modifications. DNA-protein interactions. Genetic code. Mechanism of translation and its control, post-translational modifications. Control of gene expression in prokaryotes and eukaryotes.

Unit 4: Genetic Engineering and Recombinant DNA Technology

Isolation and purification of DNA / RNA from prokaryotes / eukaryotes. Reverse transcription. Restriction endonucleases. Generation of DNA fragments, Cloning and expression vectors, plasmids, cosmids, phages, viruses (vaccinia, herpes, retrovirus and adenovirus), shuttle vectors. Cloning and expression in prokaryotic and eukaryotic hosts. DNA libraries, screening and characterization of DNA clones, transformation of bacterial and animal cells. Oligonucleotide synthesis. *In situ* mutagenesis. DNA amplification. Production of diagnostics and vaccines using

r-DNA technology. Genetically modified foods / products. Genetic manipulation of rumen microbes. Safety aspects of genetic engineering. Ethical issues related to use of biotechnology products. Patenting and Intellectual Property Rights.

Unit 5: Animal Tissue culture and Hybridoma Technology

Development of cell (tissue) and organ culture techniques. Nutrient requirements of mammalian cells. Media for culturing cells. Growth supplements. Primary cultures. Established cell lines. Stationary, Roller and Suspension culture techniques. Largescale production of cells using bioreactors, microcarriers and perfusion techniques. Characterisation and maintenance of cells, karyotyping, cryopreservation and revival. Detection of contaminants in cell cultures. Isolation and culture of lymphocytes. Application of cell and organ cultures. Micromanipulation of cells. Cell cloning. Cell fusion and Somatic cell hybrids. Principles and methods of hybridoma technology. Production and characterization of monoclonal antibodies and their application in animal health and production.

Unit 6: Embryo Transfer and Related Techniques

Induction of superovulation. Embryo collection and evaluation. Embryo splitting. Embryo sexing. Embryo transfer. Advantages of embryo transfer in farm animals. *In vitro* fertilization. Embryo cloning. Nuclear transplantation. Production of transgenic animals and gene farming. Identification and transfer of gene influencing production and disease resistance.

Unit 7: Molecular Biology Techniques

Quantitation of nucleic acids. Gel electrophoretic techniques. Isolation of plasmids. Production of radioisotopic and non-rodioisotopic probes. Nucleic acid hybridization. *In situ* hybridization radioisotypic methods of biochemical analysis. Autoradiography. Blotting techniques. Nucleic acid sequencing methods. Methods of peptide synthesis. Protein purification methods. Restriction Fragment Length Polymorphism (RFLP). DNA fingerprinting. Polymerase Chain Reaction (PCR). Computer applications in molecular biology. Animal cloning and transgenic technology.